A counterfeit electronic component operating in an electronics system may make itself known when the system experiences an unexpected failure. The failure may be relatively innocuous—a monitoring device that suddenly begins to display meaningless numbers—or it may be directly life-threatening, such as a functional failure in a defibrillator. Even after the failure has occurred, the failed component may not be recognized as counterfeit unless it’s inspected for that purpose.
Due to the nature and complexity of the global electronics component supply system, it’s fairly easy for counterfeit components to be unknowingly purchased by practically any system assembler. The ways in which counterfeits are produced, and the rapidly increasing skill of the counterfeiters in disguising their bogus components. make the problem even more severe.
Many counterfeit components find their way into the inventories of independent distributors who fill the critical role of supplying manufacturers with new components that are either obsolete, allocated, or on long lead-times from the factory. To protect their customers from the increasing counterfeit threat, some distributors have begun thorough incoming inspection processes to detect counterfeits and remove them from the supply chain. As the quantity of counterfeits has grown, and as counterfeiters have become more sophisticated, this effort has grown into a sizable laboratory in some cases.
The vast majority of counterfeit electronic components are plastic-encapsulated microcircuits (PEMs) that began life on a previously used circuit board that was ultimately scrapped, and probably within a western country. When the electronic equipment is discarded, their boards are harvested and shipped in vast quantities to China. Trucks haul the export containers from the docks of Hong Kong harbor to the town of Shantou where most of the component harvesting and counterfeit processing is performed within mainland China.
All of the ones that look the same go into the same pile. Aside from the fact that some of the components are unquestionably dead electronically at this point, a single pile may contain components having different revision codes, or even different functions. But every component in a pile will get the same new matching part-marking.The purpose of all of this work is to make each component as cosmetically similar as possible to the new component that it’s impersonating.
The point at which these counterfeits have value is at the moment when they are sold to a buyer as factory-new components. At that time, the counterfeiter’s work is, so to speak, finished. If he is selling, for example, what purports to be a reel of PQFPs made by vendor ABC, he will also counterfeit, or have someone else counterfeit, the reel and its labels. What the buyer examines will appear to be a new reel that holds new vendor ABC PQFPs.
If the counterfeiter is worried that his cosmetic work may not be quite up to standards, he may go out and purchase a few genuine vendor ABC PQFPs, and put them at the beginning, middle and ends of the reel. The sharp-eyed buyer who examines the first or last 30 or 40 components on the reel will be satisfied. The remaining 99% of the reel, however, holds counterfeits.
Information is shared by www.irvs.info
VLSI IDEA INNOVATORS are an R&D organization who were in to research and development in the electronics field for many number of years .Now we are getting to training process with the syllabus structured in R&D manner . This is the 1st time in India an R&D organization getting in to training process.
No comments:
Post a Comment